40 research outputs found

    Dynamics of shock waves in elastic-plastic solids

    No full text
    Submitted in ESAIM ProcedingsThe Maxwell type elastic-plastic solids are characterized by decaying the absolute values of the principal components of the deviatoric part of the stress tensor during the plastic relaxation step. We propose a mathematical formulation of such a model which is compatible with the von Mises criterion of plasticity. Numerical examples show the ability of the model to deal with complex physical phenomena

    Modeling hyperelasticity in non equilibrium multiphase flows

    No full text
    International audienceThe aim of this article is the construction of a multiphase hyperelastic model. The Eulerian formulation of the hyperelasticity represents a system of 14 conservative partial differential equations submitted to stationary differential constraints. This model is constructed with an elegant approach where the stored energy is given in separable form. The system admits 14 eigenvalues with 7 characteristic eigenfields. The associated Riemann problem is not easy to solve because of the presence of 7 waves. The shear waves are very diffusive when dealing with the full system. In this paper, we use a splitting approach to solve the whole system using 3 subsystems. This method reduces the diffusion of the shear waves while allowing to use a classical approximate Riemann solver. The multiphase model is obtained by adapting the discrete equations method. This approach involves an additional equation governing the evolution of a phase function relative to the presence of a phase in a cell. The system is integrated over a multiphase volume control. Finally, each phase admits its own equations system composed of three subsystems. One and three dimensional test cases are presented

    Fast and slow dynamics in a nonlinear elastic bar excited by longitudinal vibrations

    Full text link
    Heterogeneous materials, such as rocks and concrete, have a complex dynamics including hysteresis, nonlinear elasticity and viscoelasticity. It is very sensitive to microstructural changes and damage. The goal of this paper is to propose a physical model describing the longitudinal vibrations of this class of material, and to develop a numerical strategy for solving the evolution equations. The theory relies on the coupling between two processes with radically-different time scales: a fast process at the frequency of the excitation, governed by nonlinear elasticity and viscoelasticity; a slow process, governed by the evolution of defects. The evolution equations are written as a nonlinear hyperbolic system with relaxation. A time-domain numerical scheme is developed, based on a splitting strategy. The numerical simulations show qualitative agreement with the features observed experimentally by Dynamic Acousto-Elastic Testing

    Une méthode numérique robuste et rapide pour la résolution des équations de Serre-Green-Naghdi décrivant les ondes de surfaces de grandes longueurs d'ondes

    Get PDF
    Une nouvelle méthode numérique pour la résolution des équations de Serre-Green-Naghdi (SGN)décrivant les ondes dispersives pour les écoulements en eau peu profonde est proposée. D'un point de vue mathématique, les équations SGN sont les équations d'Euler-Lagrange pour un Lagrangien soumis a une contrainte différentielle : la conservation de la masse. Une des difficultés principale pour la résolution de ces équations est la nécessité de résoudre un problème elliptique à chaque pas de temps. Cette étape est la plus coûteuse lors de la résolution numérique de ce système. L'idée est ici de remplacer ce Lagrangien par une famille de Lagrangien étendu a un paramètre pour lequel les équations d'Euler Lagrange correspondantes sont hyperbolique. Avec cette approche, le Lagrangien initial est retrouvé à la limite (par exemple quand le paramètre est grand.). Le choix de cette famille de Lagrangien est discuté. Le modèle hyperbolique est résolu numériquement par une méthode de type Godunov. Les solutions numériques sont comparées avec des solutions exactes des équations de SGN. Cette méthode est appliqué pour l'étude des ondes de 'Favre' pour les ressaut ondulaire produit lors de la réflexion d'un écoulement à surface libre avec un obstacle immobile. Cette nouvelle méthode permet de réduire nettement les temps de calcul par rapport aux méthodes nécessitant l'inversion d'un opérateur elliptique

    Modélisation de la compaction dynamique avec dérive des vitesses

    Get PDF
    Dans ce rapport, on présente un modèle hyperbolique d'écoulement multiphasique incluant la compaction dynamique irréversible de poudres. Ce modèle doit être capable de remplir quatre principaux objectifs. Le premier objectif concerne le caractère irréversible de la compaction des poudres. Quand un lit de poudres est soumis à un cycle de charge-décharge, le volume final est plus petit que le volume initial. Afin de traiter ce problème d'hystérésie, on construit un modèle avec relaxation. Durant la phase de charge, on suppose que l'équilibre mécanique a lieu, ce qui correspond à une relaxation instantanée des pressions. Dans la phase de décharge, on suppose au contraire qu'une transformation mécanique a lieu, conduisant à un état mécanique hors équilibre. Par conséquent, durant chacun de ces cycles, les vitesses du son des modèles limites sont très différentes. Ces différences dans les propriétes acoustiques sont la cause justement du caractère irréversible du processus de compaction. Le second objectif est relié aux effets dynamiques, là où la pression et les ondes de chocs jouent un rôle important. La dynamique des ondes est assurée par l'hyperbolicité du modèle et l'on tient compte aussi bien de la compressibilité des phases que des énergies de configuration. Le troisième objectif concerne les effets multidimensionnels aux interfaces matérielles. En effet, la plupart des processus de com- paction font intervenir des surfaces libres. Par conséquent, le modèle doit être capable de traiter de problèmes d'interfaces entre des fluides purs et des mélanges granulaires. Enfin, le quatrième objectif concerne la perméa- tion des gaz qui peut jouer un rôle important dans certains cas spécifiques de compaction de poudres. Se pose alors la question délicate de description de ces vitesses multiples. Ces quatre points sont considérés dans un modèle unique appartenant à la classe des modèles des interfaces diffuses. La capacité du modèle a traiter ces phénomènes est validée dans des situations où chaque effet est considéré séparément. En particulier, le caractère irréversible de la compaction est considéré et validé sur plu- sieurs exemples : expérience sur un matériel énergétique (HMX granulaire), compaction granulaire de NaCl. À part les équations d'état des matériaux (pressions granulaires et hydrodynamiques, et les énergies associées), le modèle est de plus exempt de paramètre ajustable. On reproduit enfin les effets de perméation des gaz à l'aide d'un modèle de dérive des vitesses, et une analyse sur la production d'entropie. Le modèle résultant est validé sur un cas test de tube à choc où une onde de choc traverse un lit granulaire de forte densité et montre un accord parfait avec l'expérience

    Cours de comportement des structures

    No full text
    Engineering schoo

    The piston problem in hyperelasticity with the stored energy in separable form

    No full text
    International audienceThe piston problem for a hyperelastic hyperbolic conservative model where the stored energy is given in separable form is studied. The eigen fields corresponding to the hyperbolic system are of three types : linearly degenerate elds (corresponding to the contact characteristics), the elds which are genuinely nonlinear in the sense of Lax (corresponding to longitudinal waves), and, nally, nonlinear elds which are not genuinely nonlinear (corresponding to transverse waves). Taking the initial state free of stresses, we presented possible auto-similar solutions to the piston problem. In particular, we have shown that the equations admit transverse shock waves having a remarkable property : the solid density is decreasing through such a shock (it is a "rarefaction" shock)

    Une méthode numérique robuste et rapide pour la résolution des équations de Serre-Green-Naghdi décrivant les ondes de surfaces de grandes longueurs d'ondes

    Get PDF
    International audienceA new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersivewaves on shallow water is proposed. From the mathematical point of view, the SGN equations are theEuler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is themass conservation law. One major numerical challenge in solving the SGN equations is the resolutionof an elliptic problem at each time instant. It is the most time-consuming part of the numerical method.The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘extended’ lagrangians, forwhich the corresponding Euler - Lagrange equations are hyperbolic. In such an approach, the ‘master’lagrangian is recovered by the ‘extended’ lagrangian in some limit (for example, when the correspondingparameter is large). The corresponding hyperbolic system is numerically solved by a Godunov typemethod. Numerical solutions are compared with exact solutions of the SGN equations. It appears thatthe computational time in solving the hyperbolic system is much lower than in the case where the ellipticoperator is inverted. The new method is, in particular, applied to study the ‘Favre waves’ which are non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobilewallUne nouvelle méthode numérique pour la résolution des équations de Serre-Green-Naghdi (SGN) dé-crivant les ondes dispersives pour les écoulements en eau peu profonde est proposée. D’un point de vuemathématique, les équations SGN sont les équations d’Euler-Lagrange pour un Lagrangien soumis àune contrainte différentielle : la conservation de la masse. Une des difficultés principales pour la réso-lution de ces équations est la nécessité de résoudre un problème elliptique à chaque pas de temps. Cetteétape est la plus coûteuse lors de la résolution numérique de ce système. L’idée est ici de remplacer ceLagrangien par une famille à un paramètre de Lagrangien étendu pour lequel les équations d’Euler-Lagrange correspondantes sont hyperboliques. Avec cette approche, le Lagrangien initial est retrouvéà la limite (par exemple quand le paramètre est grand.). Le modèle hyperbolique est résolu numérique-ment par une méthode de type Godunov. Les solutions numériques sont comparées avec des solutionsexactes des équations de SGN. Cette méthode est appliqué pour l’étude des ondes de ’Favre’ pour lesressauts ondulaires produits lors de la réflexion d’un écoulement à surface libre sur un obstacle immo-bile. Cette nouvelle méthode permet de réduire nettement les temps de calcul par rapport aux méthodesnécessitant l’inversion d’un opérateur elliptique
    corecore